overview of graphics systems

1.       Video Display Devices
1.1.    Refresh Cathode-Ray Tubes (CRTs)
1.2.    Raster-Scan Displays
1.3.    Random-Scan Displays
1.4.    Color CRT Monitors
1.4.1. Beam penetration method
1.4.2. Shadow mask method
1.5.    Direct View Storage Tube(DVST)
1.6.    Flat-Panel Displays
2.       3D Viewing Devices
3.       Raster Scan Systems
3.1.    Video Controller
3.2.    Display Processor
4.       Random Scan Systems
5.       Basic input devices include the

 
  Graphics output technology may be split into two categories:
  Non-permanent output to a screen
  Permanent output to a paper
  Recently all devices are digital in nature:
  Therefore, producing images become the process of setting individual points on the screen or on paper
  The points are laid out in a regular pattern on the output media.
Video Display Devices
Ø  Refresh Cathode-Ray Tubes (CRTs)
Ø   Raster-Scan Displays
Ø   Random-Scan Displays
Ø   Color CRT Monitors
Ø   Flat-Panel Displays
Refresh Cathode-Ray Tubes (CRT)                     
  beam of electrons emitted by an electron gun, passes through focusing and deflection systems that direct the beam toward specified positions on the phosphor-coated screen.
  Because the light emitted by the phosphor fades very rabidly, the refresh process is needed to maintain the picture on the screen.
  Refreshing is done by redrawing the picture repeatedly by quickly directing the electron beam back over the same screen points.
  Refresh rate: the frequency at which a picture is redrawn on the screen.



  Components of the Electron Gun :
1.       The heated metal cathode
2.       A control grid
  Heat is supplied to the cathode by directing a current through a coil of wire (the filament) inside the cathode.
  This causes electrons to be “boiled off” the hot cathode surface.
  
Then, the free, negatively electrons are then accelerated towards the phosphor coating by a high positive voltage.

  Intensity of the electron beam is controlled by the voltage at the control grid.
  A high negative voltage applied to the control grid will shut off the beam.
  A smaller negative voltage on the control grid decreases the number of electrons passing through.
  The brightness of a display point is controlled by varying the voltage on the control grid.
  The focusing system forces the electron beam to converge to a small cross section as it strikes the phosphor.
  Deflection of the electron beam can be controlled by the deflection coils.
  Spots of light are produced on the screen by the transfer of the CRT beam energy to the phosphor.
  Persistence: how long phosphors continue to emit light after the CRT beam is removed.
  Persistence is defined as the time that it takes the emitted light from the screen to decay to one-tenth of its original intensity.
  Lower-persistence phosphors require high refresh rates to maintain a picture definition on the screen without flicker and they are useful for animation.
  Higher-persistence phosphors  are useful for displaying highly complex, static pictures.
Raster-Scan Displays
  The electron beam is swept across the screen one row at a time from top to bottom. Each row is referred to as a scan line.
  Picture definition is stored in the frame buffer. This memory area holds the set of intensity values for the screen points. These stored values are then retrieved from the refresh buffer and used to control the intensity of the electron beam as it moves from spot to spot across the screen.
  Refreshing on raster-scan display is carried out at the rate of 60-80 frames per seconds, this can be done by using following retrace techniques
  Horizontal retrace
  Vertical retrace

  The scan is synchronized with the access of the intensity values held in the frame buffer.
  The maximum resolution is determined by:
  The characteristics of the monitor
  Memory capacity available for storing the frame buffer
Random-Scan Displays
  The electron beam directed only to those parts of the screen where a picture is to be displayed.
  Sometimes called: store-writing or calligraphic displays.
  Picture definition is stored as a set of line-drawing commands.
  Draws all the component lines of a picture 30 to 60 times each second, with up to 100,000 “short” lines in the display list.
  Designed for line-drawing applications and they cannot display realistic shaded scenes.
  A pen plotter operate in a similar way.
  Draws the components  lines of an object in any order specified.
  Have higher resolution than raster-scan systems.
  Produce smooth line drawing.
  Refresh rate on a random scan system depends on the number of lines to be displayed.
  Picture definition is now stored as a set of line-drawing commands in an area of memory referred to as the refresh display file.
  Other names: display list, display program or refresh rate “A set of commands”.
  After all line drawing commands have been processed, the system cycles through the set of commands in the display file.
  All component lines of a picture are drawn 30 to 60 times each second
  When a small set of lines is to be displayed each  refresh cycle is delayed to avoid refresh rates greater than 60 frames per second.
  Advantages:
  For line drawing applications
  Higher resolution than raster scan systems
  Smooth lines
  Disadvantages:
  Cannot display realistic shaded scenes
  Faster refreshing of the set of lines could burn out the phosphor
Color CRT Monitors
  Cathode Ray Tube(CRT) is the most common display device
  High resolution
  Good color fidelity
  High contrast (400:1)
  High update rates
Techniques for producing color :
  Beam penetration method
  Shadow mask method
Beam Penetration Method
  Random scan monitors use the beam penetration method for displaying color picture. In this, the inside of CRT screen is coated two layers of phorphor namely red and green.
  A beam of slow electrons excites ony the outer red layer, while a beam of fast electrons penetrates red layer and excites the inner green layer. At intermediate beam speeds, combination of red and green light are emitted to show two addtional colors- orange and yellow.
Advantages
  Less expensive
Disadvantages
  Quality of images are not good as comparatable with other methods
  Four colors are allowed only
Shadow Mask Method
  Raster scan system are use shadow mask methods to produced a much more range of colors than beam penetration method.
  In this, CRT has three phosphor color dots. One phosphor dot emits a red light, second emits a green light and third emits a blue light.
  This type of CRT has three electrons guns and a shadow mask grid as shown in figure below:
  In this figure, three electrons beams are deflected and focused as a group onto the shadow mask which contains a series of holes. When three beams pass through a hole in shadow mask they activate dot triangle as shown in figure below
Advantages
  produce realistic images
  also produced different colors
  and shadows scenes.
Disadvantages
  low resolution
  expensive
  electron beam directed to whole screen
Direct View Storage Tube(DVST)
  A cathode-ray tube in which secondary emission of electrons from a storage grid is used to provide an intensely bright display for long and controllable periods of time. Also known as display storage tube; viewing storage tube.
  These monitors can play high resolution picture without flicker.
Flat Panel Displays
  Thin screen displays found with all portable computers and becoming the new standard with desktop computers. Instead of utilizing the cathode-ray tube technology flat-panel displays use Liquid-crystal display (LCD) technology or other alternative making them much lighter and thinner when compared with a traditional monitor.
3D Viewing Devices
  3D display is any display device capable of conveying a stereoscopic perception of 3-D depth to the viewer.
  As the varifocal mirror vibrates,  it changes focal length. These vibrations are synchronized with the display  of  an object on a CRT so that each point on the object is reflected from the mirror into a  spatial position  corresponding to the distance of  that point  from a specified  viewing position.
  This allows us to walk around an object or scene and view it from different sides.
Raster Scan Systems
  Interactive raster-graphics systems typically employ several processing units.
  In addition to the CPU, a special purpose processor called the video controller or display controller is used to control the operation of the display device.
  Here the frame buffer is in the system memory, the video controller access the frame buffer to refresh the screen.
1. Video Controller
  A fixed area of the system memory is reserved for the frame buffer, and the video controller is given direct access to the frame buffer memory.
  The co-ordinates of the graphics monitor starts at the lower left screen corner. Positive x values increasing to the right and y values increasing from bottom to top.

2. Display Processor
  The purpose of the display processor or graphics controller is to free the CPU from the graphics chores. In addition to the system memory a separate display processor memory area can also provided.
  A major task of the display processor is digitizing a picture definition given in an application program into a set of pixel-intensity values for storage in the frame buffer. This digitization process is called scan conversion.
  Lines and other geometric objects are converted into set of discrete intensity points. Characters can be defined with rectangular grids, or they can be defined with curved outlines.
  To reduce the memory space required to store the image information, each scan line are stored as a set of integer pairs.
  One number of each pair indicates an intensity value, and the second number specifies number of adjacent pixels the scan line that is also having same intensity. This technique is called run-length encoding.
The above diagram shows the refresh operation of video controller. Two registers are used to store the co-ordinates of the screen pixels. Initially x=0 and y=ymax


  The value stored in the frame buffer corresponding to this pixel position is retrieved.
  And the x value is incremented by 1 and the corresponding y value is retrieved, like that the pixel values are retrieved line by line.
  Once the last pixel is reached again the registers are reset to initial value to repeat the process






Random Scan Systems
  An application program is input and stored in the system memory along with a graphics package. Graphics commands in the program are translated by the graphics package into a display file stored in the system memory.
   This display file is then accessed by the display processor to refresh the screen.
  The display processor cycles through each command in the display file program once during every refresh cycle.
  Graphic patterns are drawn on a random scan system by directing the electron beam along the component lines of the picture.
  Lines are defined by the values for their co-ordinate endpoints, and these input co-ordinate values are converted to x and y deflection voltages. A scene is then drawn one line at a time by positioning the beam to fill in the line between specified endpoints.
Basic input devices include the
  Keyboard
  Mouse
  Digitizer
  Trackball
  Touch Screens
  Light Pens
  Microphones
  Bar code readers
  Joysticks
  Scanners
  Voice Systems

1 comment: